The role of the human microbiota has recently been a focus of research interest in numerous cutaneous diseases including psoriasis and atopic dermatitis as well as skin cancer. The skin microbiota is increasingly thought to play an integral role in maintaining the homeostasis of the skin and its important barrier function. A recent review study1 looked at the human microbiota, particularly the skin microbiota, and the potential role it may have in the development of skin cancer.

“Given the emphasis on microbial composition and its involvement in human disease in recent years, the question arises as to how an individual’s distinct microbiota, which outnumbers human cells by a factor of 10, may influence skin cancer risk and subsequent response to therapy. Since microbial dysbiosis is linked with chronic inflammation, inflammation-mediated carcinogenesis processes, and immune evasion, it is not surprising that microbes are associated with the development of specific cancers,” wrote Hei Sung Kim, MD, and fellow colleagues, of the department of dermatology at Incheon St. Mary’s Hospital of the Catholic University of Korea, in Seoul, Korea.

For many years now, the incidence of skin cancer including melanoma, T cell lymphoma, and nonmelanoma skin cancers (NMSC) including basal cell carcinoma (BCC), and squamous cell carcinoma (SCC) has been on the rise and has become a major health issue in medical practice. The majority of NMSCs are BCC and SCC with approximately 70% and 25% constituting total cases, respectively.2

Most NMSCs are caused by excessive ultraviolet (UV) radiation via sun exposure, resulting in DNA damage, reactive oxygen species (ROS), and inflammatory cytokines leading to immunosuppression and cancer development. However, other risk factors including immunosuppression, chronic inflammation, and the use of antibiotics suggest the microbiome as another unexplored risk for the development of skin cancer.3

The skin microbiome consists of a collection of microbes including bacteria, archaea, fungi, viruses, and mites, all of which reside in and on the skin. The coexistence of these commensal microbes in an established healthy balance plays a central role in the normal barrier function of the skin and ensures skin homeostasis. The secretion of protease enzymes by resident skin microbes is integrally involved in the desquamation process and renewal of the stratum corneum. When dysbiosis of the skin microbiota occurs, it is possible that that the disarray can be in part responsible for the development of skin cancers.

More Information: here